
Knowledge Space Theory Input and Output

Cord Hockemeyer

September 12, 2024

Abstract

This document explains basic read and write operations for knowledge structures and knowl-

edge spaces available in R through the kstIO package.

Contents

1 Introduction 1

2 File Formats 1

2.1 Matrix Format . 2
2.2 KST Tools Format . 2
2.3 SRBT Tools Format . 2
2.4 CSV Format . 2

3 Speci�c File Types 2

3.1 Base Files . 2
3.2 Surmise Function Files . 2
3.3 (Surmise) Relation Files . 3
3.4 Example . 3
3.5 Binary File Formats . 3

4 Output functions 3

5 Input Functions 4

1 Introduction

Knowledge Space Theory (Doignon and Falmagne, 1999) is a set- and order-theoretical framework,
which proposes mathematical formalisms to operationalize knowledge structures in a particular
domain. There exist several R packages for knowledge space theory, namely kst, kstMatrix, pks,
and DAKS which use di�erent forms of representations for knowledge spaces and structures. The
kstIO package provides functions for reading and writing those structures from/to �les.

2 File Formats

Over time and in di�erent research groups with knowledge space theory, di�erent �le formats have
evolved.

1

2.1 Matrix Format

The probably simplest and most direct approach is to store the information in a binary ASCII
matrix where a "1" in row i and column j means that item j is element of state/response pattern
i.

There is no separating character between the columns, and there should be no trailing whites-
pace at the end of the line. The last line of the matrix must carry an EndOfLine - in most editors
(except vi) this means an empty line after the matrix.

2.2 KST Tools Format

This format (Hockemeyer, 2001) extends the matrix format by two preceding header lines con-
taining the number of items and the number of states/response patterns, respectively.

2.3 SRBT Tools Format

This format (Pötzi and Wesiak, 2001) extends the KST tools format by yet another preceding
header line with format and content metadata. This new header line has the format

#SRBT v2.0 <struct> ASCII <comment>

where <struct> speci�es the type of data stored in the �le and <comment> is an optional arbitrary
comment.

The following data types are supported by the respective kstIO functions:

� basis

� data

� space

� structure

� relation

2.4 CSV Format

In CSV format, there is a separating comma between the columns. The matrix is preceded by a
head line containing the item IDs.

3 Speci�c File Types

3.1 Base Files

For base �les, some special rules apply. They are available only in KST, SRBT tools, and CSV
format. Their matrix part di�ers from the other �les in that it contains "0", "1", and "2". A
"1" means that the state is minimal for the item and a "2" means that it is not (but contains the
item). A "0" stands (as always) for the state not containing the item.

For kbase �les, the encoding information "ASCII" is missing because kbase �les are always in
ASCII format.

Note: While the respective functions in kst and kstIO use the term base in their names, the
struct> term in the SRBT header line is basis.

3.2 Surmise Function Files

In surmise unction �les, the matrix is preceded by an additional column containing the ID of the
item for which the respective matrix row is a clause.

2

3.3 (Surmise) Relation Files

Also for relation �les, some special rules apply. As relation �le formats were never de�ned in KST
tools format, these �les are available in SRBT tools, matrix, and CSV format only. Like for base
�les, the encoding information "ASCII" is missing because relation �les are always in ASCII
format.

3.4 Example

Below, you see an example of a small knowledge structure �le in SRBT format.

#SRBT v2.0 structure ASCII

3

5

000

100

110

101

111

3.5 Binary File Formats

The KST and SRBT Tools User Manuals (Hockemeyer, 2001; Pötzi and Wesiak, 2001) de�ne also
binary �le formats. These formats are not supported by the kstIO package.

4 Output functions

There are �ve output functions in the kstIO package.

� write_kbase()

� write_kdata()

� write_kspace()

� write_kstructure()

� write_surmiserelation()

These functions have the same calling scheme

write_XXX(x, filename, format="SRBT")

where x denotes the data structure to be written, filename the name of the �le to be created,
and format the �le format ("SRBT", "KST", or "matrix" as described in Section 2 above. The
knowledge structure or knowledge space can be in set-based format (classes kspace or kstructure)
or in matrix format. Please note that for bases, only the SRBT and KST formats are valid.

> # Obtain data from the pks package

> data(DoignonFalmagne7)

> ksp <- kspace(kstructure(as.pattern(DoignonFalmagne7$K, as.set=TRUE)))

> b <- kbase(ksp)

> d <- as.binmat(DoignonFalmagne7$N.R, uniq=FALSE)

> r <- as.relation(ksp)

> ksp

{{}, {"a"}, {"b"}, {"a", "b"}, {"a", "b", "c"}, {"a", "b", "d"}, {"a",

"b", "c", "d"}, {"a", "b", "c", "e"}, {"a", "b", "c", "d", "e"}}

3

> b

{{"a"}, {"b"}, {"a", "b", "c"}, {"a", "b", "d"}, {"a", "b", "c", "e"}}

> head(d)

a b c d e

[1,] 0 0 0 0 0

[2,] 0 0 0 0 0

[3,] 0 0 0 0 0

[4,] 0 0 0 0 0

[5,] 0 0 0 0 0

[6,] 0 0 0 0 0

> # Write data to files

> write_kstructure(ksp, "DF7.struct")

> write_kspace(ksp, "DF7.space", format="matrix")

> write_kbase(b, "DF7.bas", format="KST")

> write_kdata(d, "DF7.data", format="SRBT")

> write_surmiserelation(r, "DF7.rel")

The resulting base �le, for example, looks like the following:

> txt <- readLines("DF7.bas")

> for (i in txt)

+ cat(paste(i, "\n", sep=""))

5

5

10000

01000

22100

22010

22201

5 Input Functions

There are six input functions in the kstIO package.

� read_kbase()

� read_kdata()

� read_kfamset()

� read_kspace()

� read_kstructure()

� read_surmiserelation()

These functions have a similar calling scheme. For bases, data, famsets, and knowledge structures
it is

d <- read_kXXX(filename, format="SRBT")

4

where filename denotes the �le to be read and format the �le format ("SRBT", "KST", or "matrix"
as described in Section 2 above, or "auto" (default) for automatic format detection. Please note
that automatic format detection works slightly heuristically and therefore might err between "KST"

and "matrix" formats under rare circumstances.
For surmise relations and knowledge spaces, there is an additional (optional) parameter:

d <- read_YYYY(filename, format="SRBT", close=FALSE)

The return values depend on the type of �le to be read: for read_kfamset(), read_kspace(),
read_kstructure(), and read_kbase(), it is a list containing two elements, matrix and sets

which contain the read knowledge structure/space/base as a binary matrix and in set-based form
(i.e. as object of class kspace, kstructure, or kbase), respectively. For read_kdata(), a binary
matrix is returned. For read_surmiserelation(), a list with two elements, relation and matrix

is returned which contain the surmise relation and its incedence matrix, repectively.
If close is TRUE, the respective structure is closed, i. e. in case of a knowledge space, it is closed

under union, and in case of a surmise relation, it is closed under re�exivity and transitivity.

> # Read the data files stored before

> read_kfamset("DF7.space")

$matrix

a b c d e

[1,] NA NA NA NA NA

[2,] 0 0 0 0 0

[3,] 1 0 0 0 0

[4,] 0 1 0 0 0

[5,] 1 1 0 0 0

[6,] 1 1 1 0 0

[7,] 1 1 0 1 0

[8,] 1 1 1 1 0

[9,] 1 1 1 0 1

[10,] 1 1 1 1 1

$sets

{{}, {NA}, {"a"}, {"b"}, {"a", "b"}, {"a", "b", "c"}, {"a", "b", "d"},

{"a", "b", "c", "d"}, {"a", "b", "c", "e"}, {"a", "b", "c", "d", "e"}}

> read_kstructure("DF7.struct", format="SRBT")

$matrix

a b c d e

[1,] NA NA NA NA NA

[2,] 0 0 0 0 0

[3,] 1 0 0 0 0

[4,] 0 1 0 0 0

[5,] 1 1 0 0 0

[6,] 1 1 1 0 0

[7,] 1 1 0 1 0

[8,] 1 1 1 1 0

[9,] 1 1 1 0 1

$sets

{{}, {NA}, {"a"}, {"b"}, {"a", "b"}, {"a", "b", "c"}, {"a", "b", "d"},

{"a", "b", "c", "d"}, {"a", "b", "c", "e"}}

> read_kspace("DF7.space", format="matrix")

5

$matrix

a b c d e

[1,] NA NA NA NA NA

[2,] 0 0 0 0 0

[3,] 1 0 0 0 0

[4,] 0 1 0 0 0

[5,] 1 1 0 0 0

[6,] 1 1 1 0 0

[7,] 1 1 0 1 0

[8,] 1 1 1 1 0

[9,] 1 1 1 0 1

[10,] 1 1 1 1 1

$sets

{{}, {NA}, {"a"}, {"b"}, {"a", "b"}, {"a", "b", "c"}, {"a", "b", "d"},

{"a", "b", "c", "d"}, {"a", "b", "c", "e"}, {"a", "b", "c", "d", "e"}}

> read_kbase("DF7.bas", format="auto")

$matrix

a b c d e

[1,] 1 0 0 0 0

[2,] 0 1 0 0 0

[3,] 1 1 1 0 0

[4,] 1 1 0 1 0

[5,] 1 1 1 0 1

$sets

{{"a"}, {"b"}, {"a", "b", "c"}, {"a", "b", "d"}, {"a", "b", "c", "e"}}

> head(read_kdata("DF7.data"))

a b c d e

[1,] 0 0 0 0 0

[2,] 0 0 0 0 0

[3,] 0 0 0 0 0

[4,] 0 0 0 0 0

[5,] 0 0 0 0 0

[6,] 0 0 0 0 0

> read_surmiserelation("DF7.rel")

$relation

A binary relation of size 5 x 5.

$matrix

a b c d e

a NA NA NA NA NA

b 1 0 1 1 1

c 0 1 1 1 1

d 0 0 1 0 1

e 0 0 0 1 0

References

J.-P. Doignon and J.-C. Falmagne. Knowledge Spaces. Springer�Verlag, Berlin, 1999.

6

C. Hockemeyer. KST Tools User Manual, 2nd edition, 2001. https://kst.hockemeyer.at/techreports/

KST-Tools_TechRep_FWF01.pdf.

S. Pötzi and G. Wesiak. SRbT Tools User Manual, 2001. https://kst.hockemeyer.at/techreports/

SRBT-Tools_TechRep_FWF01.pdf.

7

https://kst.hockemeyer.at/techreports/KST-Tools_TechRep_FWF01.pdf
https://kst.hockemeyer.at/techreports/KST-Tools_TechRep_FWF01.pdf
https://kst.hockemeyer.at/techreports/SRBT-Tools_TechRep_FWF01.pdf
https://kst.hockemeyer.at/techreports/SRBT-Tools_TechRep_FWF01.pdf

Index

read_kbase, 4
read_kdata, 4
read_kfamset, 4
read_kspace, 4
read_kstructure, 4
read_surmiserelation, 4
write_kbase, 3
write_kdata, 3
write_kspace, 3
write_kstructure, 3
write_surmiserelation, 3

8

	Introduction
	File Formats
	Matrix Format
	KST Tools Format
	SRBT Tools Format
	CSV Format

	Specific File Types
	Base Files
	Surmise Function Files
	(Surmise) Relation Files
	Example
	Binary File Formats

	Output functions
	Input Functions

